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Given training inputs  X1, … , X𝑁 and outputs 𝑦1, … , 𝑦𝑁 , estimate that a function 
𝑦 = f(𝑥) that is likely to have generated outputs

prior: 𝑝 f likelihood: 𝑝 Y f , X
posterior: 𝑝 f X, Y

We can predict an output for a new input 𝑥∗ by integrate all possible functions f

To approximate the integral, assume that the model depends on a finite set of 
random variables 𝜔 alone



Variational inference

Let X = 𝑥1:𝑛 be a set of observed variables and 𝑍 = 𝑧1:𝑚 be a set of latent variables.
We specify a family of densities over the latent variables. Now our goal is to find a 

approximation 𝑞 𝑧 to the exact conditional 𝑝 𝑧 𝑥 .

We thus minimize the Kullback–Leibler (KL) divergence, intuitively a measure of similarity 
between two distributions



Because we cannot compute the KL, we optimize an alternative objective that is equivalent
to the KL up to an added constant

This function is called the evidence lower bound(ELBO)

We rewrite the ELBO as a sum of the expected log likelihood of the data and the KL 
divergence between the prior 𝑝(𝑧) and 𝑞(𝑧)



We define an approximating variational distribution 𝑞 𝜔 to be as close as 
possible to the posterior distribution by minimizing the KL divengence. 

resulting in the approximate predictive distribution

Minimising the Kullback–Leibler divergence is equivalent to maximising the 
log evidence lower bound



Dropout as Approximate Variational Inference in Bayesian Neural Network

Let ො𝑦 by be the output of a NN with L layers and a loss function 𝐸 ⋅,⋅ such as the softmax
loss. We denote by 𝑊𝑖 the NN’s weight matrices of dimensions 𝐾𝑖 × 𝐾𝑖−1, and by 𝑏𝑖 the 
bias vectors of dimensions 𝐾𝑖 for each layer 𝑖 = 1,… , 𝐿. In addition to regularization, we 
have the optimization problem

Given weight matrices 𝑊𝑖 and bias vectors 𝑏𝑖 for layer 𝑖, we often place standard matrix 
Gaussian prior distributions over the weight matrices, 𝑝(𝑊𝑖):

We are thus interested in the posterior over the weights given our observables X, Y: 
𝑝 𝜔 X, Y . This posterior is not tractable for a Bayesian NN, and we use variational

inference to approximate it.



We define our approximating variational distribution 𝑞(𝜔𝑖) for every layer 𝑖 as

Here 𝑧𝑖,𝑗 are Bernoulli distributed random variables with some probabilities 𝑝𝑖, and 𝑀𝑖 are 

variational parameters to be optimized. The binary variable 𝑧𝑖,𝑗 = 0 corresponds to unit 𝑗 in 
layer 𝑖 − 1 being dropped out as an input to the 𝑖’th layer.

The integral in eq is intractable, and we approximate the integral with Monte Carlo 
integration over 𝜔. 



𝐸(∙,∙) being the softmax loss (for a softmax likelihood). 
Note that sampling from 𝑞(𝑊𝑖) is identical to performing dropout on layer 𝑖 in a 
network whose weights are 𝑀𝑖 𝑖=1

𝐿 . The second term can be approximated, resulting 
in the same objective as dropout.

Dropout and Bayesian NNs, in effect, result in the same model parameters that 
best explain the data.



Predictions in this model follow eq replacing the posterior 𝑝 𝜔 𝐷𝑡𝑟𝑎𝑖𝑛 with the approximate 
Posterior 𝑞(𝜔). We can approximate the integral with Monte Carlo integration: 

With ෝ𝜔𝑡~𝑞𝜃
∗(𝜔), where 𝑞𝜃(𝜔) is the Dropout distribution. 



Acquisition Functions and their Approximations

Given a model 𝑀, pool data 𝐷𝑝𝑜𝑜𝑙 , and inputs 𝑥𝜖𝐷𝑝𝑜𝑜𝑙, an acquisition function 
𝑎(𝑥 ,𝑀) is a function of 𝑥 that the AL system uses to decide where to query next:

Deep Bayesian Active Learning

Deep learning poses several difficulties when used in an active learning setting.

• Active learning  methods generally rely on being able to learn and 
update models from small amounts of data.

• Many AL acquisition functions rely on model uncertainty, yet deep 
learning methods rarely represent such model uncertainty. 



2. Choose pool points that are expected to maximize the mutual information between 
predictions and model posterior (BALD)

For classification, several acquisition functions are available:

1.  Choose pool points that maximize the predictive entropy (Max Entropy) 

ℍ 𝑦|𝑥, 𝑤 is the entropy of 𝑦 given model weight 𝜔.



4. Maximize mean standard deviation (Mean STD)

5. Random acquisition (baseline)

3. Maximize the Variation Ratios



We can approximate each of these acquisition functions using our approximate distribution 
𝑞𝜃
∗ 𝜔 . For BALD, for example, we can write the acquisition function as follows : 

𝕀 𝑦, 𝑤|𝑥, 𝐷𝑡𝑟𝑎𝑖𝑛 can be approximated in our setting using 

then, 



Swapping the posterior 𝑝(𝑤|𝐷𝑡𝑟𝑎𝑖𝑛) with our approximate posterior 𝑞𝜃
∗ 𝜔

and through MC sampling, we then have

with Ƹ𝑝𝑐
𝑡 the probability of input 𝑥 with model parameters ෝ𝑤𝑡 ∼ 𝑞𝜃

∗ 𝜔 to take class 𝑐:



We then have



Comparison of various acquisition functions



Comparison to current active learning techniques with image data



Comparison to semi-supervised learning


