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Sparse Representation-Based Classification

Stack the training samples from the i, class as columns of a large matrix: Y; € RM*Ni

Y = [Yy, Y, ..., Y] € RM*N N =3;N

If the Y; are sufficiently expressive, a new input sample from the i, class stacked as a vector
y, € RM, will have a sparse representation

y,=Yx  x€RN

X =argmin|lx|l;  s.t. |lye—Yx|| 2 <e [lx[lx = 2%
X

7/‘k:”yt_ij?kHZr k=1,..,K

k* = class of y;, = arg minr;,
k




Extreme Value Theory

<r>

Algorithm 1. Sparse Representation-Based Classification

Input: Y, L', ¢, y,
x = argming||x|[; s.t. ||y, — Yx|, < €
T ||Yf — Yk&kHQ fOI' k = 1, Ce 7K
k™ = arg mingry,

Output: £*,r = [r,r9,...,7g]
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single class
K xmaxp||x, ||y 1 /
X
SCI(x) = [1x]]1

e [0, 1]

K -1 ———) 3| Class

an unknown distribution F(z) ni.id. samples {Z,,Z,, ..., Z,,}

Zn=maxZ; 1€][l,n]
l



Fisher-Tippett-Gnedenko theorem

] _ _ a. >0 li p Zm — bn —F
if there exists a pair of parameters (a,, by,) 2o 0 — e\ T )T (2)
n

E(z) is a non-degenerate distribution that belongs to either Frechet, Weibull or Gumbel distribution. These
distributions can be represented as a Generalized Extreme Value distribution (GEV) as follows

72—\
E(Z; .uv O-) E) — exp_p(Z) p(Z) == <1 + f (—)>
o
u,o and & are the location, scaling and shape parameters, respectively

choose which distribution to use among the three based on prior knowledge

segment the data into several parts and model the maximum in each part as a
distribution using GEV

¥* ¥



Generalized Pareto distribution (GPD), denoted as G (z) (CDF) was proposed to estimate the tail
distribution of data samples.

It was shown that given a sufficiently large threshold u, the probability of an observation exceeding
u by z conditioned on u can be approximated by

lim P(Z>z4+ulZ>u)=1-G(2)

n—>00

—1
2\ T
_)aj > > () c>0<¢eR x, =max(x,0)
0/ +

G(z)zl—(1—|—£

SPARSE REPRESENTATION-BASED OPEN-SET RECOGNITION

Open set Risk was defined as the cost of labeling the open set sample as known sample



arg min G, (f) + 4, Cc(f)
f

C,(f) : open setrisk

Matched reconstruction errors here mean that
the errors correspond to the sparse coefficients
of digit 9

a
Non-matched reconstruction errors mean
that the errors are generated by the sparse

coefficients of all other digits

Ce(f)

empirical risk for classification

[lMatched [lINon-Matched |
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If one can fit a probability model P(r;,) to describe the distribution of the reconstruction errors of
the matched class, then one can reformulate the open-set recognition problem as a hypothesis

testing for novelty detection problem as

0.8



}[0: P(T'k) < 6
H,: P(ry) > 8 6 €[01]

}[0: G(rk) < 6,9

Use the GPD to model the tail of the matched distribution Hy: G(r) > 6,

G (1) is the learned GPD distribution for fitting the right tail of , and §, is the rejection threshold.

BSum of Non-Matched from Closed-set
BSum of Non-Matched from Open-set

0.04 T T T

As we are only interested in the right tail of
the matched distribution and the left tall
of the sum of non-matched distribution,

we apply an inverse procedure to the
random variable Z as

ZI=_Z

So the right tail of Z; is the left tail of Z



Training

Algorithm 2. Pseudocode for SROSR Training

Input: Y, p,¢, L, L7
Initialization
for: —1: K do

forj=1:L do

Y; = randomly ordered Y; € RM*M
Ny = N; x 0.8

Y~ Y,(: 1

. Ny

L'?' = Labels of Y?
Y = Y;(:. Ny + 1 : end)
L'“" — Labels of Ytﬁ
ri(7,:) < SRC (Y, Y, L7, £ ¢)

end for
R =[r;(1,i),...,5;,(L,1)]
Ri™=1> 4t (1 ) B

2 ppi Gi( L))

om(i). & (i) — GPDfit(R™, p)
Onm (1), & (1) — GPDAit(=R™™, p)

end for
Output: 0,,,.&,,,, 0> §un

-
%‘v‘ \\\\\\\,\IJJy‘//'
iy

\ \ //////////_r
E ;Q’(
G S
1952

ZZ0TN

’VUA

\\ &\\Q"\\h[d
%,
/////// Il



Testing

As the two raw reconstruction errors are all normalized into probabilities by their
corresponding GPDs, we can add the two probability scores together with
appropriate weights to obtain the final score.

1
w=3 (1 — Openness)

2 X Npgy
Openness = 1 —
Nrg + Nrg

N74,Nr¢, and Ny are the
number of training classes, the
number of target classes to be
identified, and the number of
testing classes, respectively

~E

\ﬁ‘)\\\;‘aﬁ“ =
2///// 1952 \s

Algorithm 3. Pseudocode for SROSR Testing

Inp ut: Y: Y, Om, gm ) O'n..?g':. ) &1.1'1':. ? éf w, ¢
1:r —SRC (Y,y,, L', ¢)
3: k¥ = arg min;r; _
4 Fm = Tk* Tnm — Z?ﬁ 1a#k* T
5: S = G(rm; o (K). &, (K)),
Snm = G(Tpm; Opm (K7), &, (E"))
6:5=5,+w...5um
if S > §; then
Class ol y, = 0
else
Class of y, = k*
end if
Output: £* or O
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Probability Models for Open Set Recognition

PAMI 2014
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The idea of a CAP model is to ensure that the recognition function is decreasing away from
the training data

O be the “open space,” and S, be a ball of radius r, that includes all of the known
positive training examples x € K as well as the open space 0. The probabilistic Open
Space Risk R, (f) for a class y can be defined as

fo fy(x)dx
Ro(f) =
fs(, fy(x)dx gé%
open
The definition of open space 0=35,— U By (x;) space

IEN

B,(x;) is a closed ball of radius r centered around training sample x;



Abating bound A(r): R — R is a non-negative finite square integrable continuous decreasing

function. _
lim,,,A(r) =0

K(x,x;)) =< ®(x),P(x;)) > x€XK xeX
We call kernel K abating if there exists an abating bound A such that

Vx,x;: 0 < K(x,x;) < Al|lx — x;]| RBF (Gaussian) kernels

Abating Probabilistic Point Model monotonically decreasing probability distribution ps(s; y)

Consider fusing the abating models, for any example x € X we define the model

M(x) = pr(F(K (1) . K(X, Xm)); ¥)




F is the fusion operator canonical sum or canonical product rule

-

positive definite kernels are closed under canonical sums or products

Fused Abating Property F(K(x,x1) . K(x, %)) < A (J]1x" = x]]) lim,,,A(r) =0

The model can have non-zero probability over all of R"

compact abating probability Model M, given finite t and Vx € X

min{{x —x;|| >7t=>M_(x) =0
min| Ix — x| ()
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Theorem 1 (Open Space Risk of CAP models). Let M, ,(x) be a
probabilistic recognition function that uses a CAP model over a
known training set for class y, where 3x; € K| M., (x;) > 0. Let
open space risk be Rp(f) and open space be O, defined as in Egs. (1)
and (2) respectively. If r in Eq. (2) satisfies |r > t,| then
Ro(M:,) = 0,/i.e., when the CAP distance threshold is smaller than
the open space radius, the CAP model has zero open space risk.

Corollary 1 (Thresholding CAP model probability manages
Open Space Risk). For any CAP model, considering only points
with sufficiently high probability will reduce open space risk. In par-
ticular, consider a canonical sum kernel-based CAP model with a
probability threshold|0 < §; < 1|such that for the set of points x; € K
and lcoefficients v; > 0, pr(D_; ViK(x, ;) y) > 6;. Increasing &,
decreases open space risk, and there exists a & such that any greater
threshold produces zero open space risk.
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A simple CAP example: Nearest Neighbor + CAP

d,: the distance to the nearest neighbor of x

T — dy|

dx >T= Pa(X) =0 pa(x) =

this results in a thresholded nearest neighbor algorithm that can reject an input as unknown

Theorem 2 (RBF One-Class SVM yields CAP model). Let
x; €Ki =1...m be the training data for class y. Let O-SVM be
a one-class SVM with a square integrable monotonically decreas-
ing RBF kernel K defined over the training data, with associated
Lagrangian multipliers o; > 0 (28|, then ) . oy, K(x, ;) yields a
CAP model.




W-SVM Weibull-calibrated SVM.

Unfortunately, the decision score of a binary SVM is not a canonical sum, however, still be useful
as improved probabilities will generally result in tighter bounds around the class of interest.

ny . RN ~ n_ _
" {-?':;li:—i_l} A?(;E.;I?i} {ll.:y?;:_l}

1y =sgn (i Z <(I) (), P(x; )>, —— Z S(} (), ®(x; )>, + b)

k(x,x;)

b= 2 (EQ__ Z{('i-aj)i'yi:'yj:—l} k’(;l'i-‘ ;I’j) o ;{ Z{(i,j):yi =y, ==+1} k-‘(”}'ir 41-'L'j))

p+(7) ::i Z k(x,x;), p—(x) ::L Z k(x,x;),

" =) " =1y
View the SVM as applying a decision rule on which is more similar

Working with only the positive or negative data, we can get nicely bounded results from a binary SVM
that can be used in conjunction with the one-class probabilities.



Binary RBF SVM Incorporating a CAP Model

We use the one-class SVM CAP model as a conditioner: if the one-class SVM predicts P,(y|x) > 6,
even with a very low threshold §,, that a given input x is a member of class y, then we will consider
the binary classifier’s estimates of P(y|x).

We seek to model the positive and negative scores separately.

yeY P*(y|x) P~ (Y\ylx) P (ylx) =1 - P~ (Y\yl|x)
Thus to minimize our open space risk, we only consider P* and P* when P,(y|x) > &,

Grounded Probability Estimation

The extreme values of a score distribution produced by any recognition algorithm can always be
modeled by an EVT distribution, which is a reverse Weibull if the data are bounded from above, and
a Weibull if bounded from below



Areverse Weibull is justified for the largest scores from the negative examples because they
are bounded from above

A Weibull is the expected distribution for the smallest scores from the positive examples because
they are bounded from below.

SjES+ le]E:K:-I- l/)

— Kt - = N - isi .
K=KTUX s; = f(x;) : the SVM decision score for x; s €S ifx €K 7

location v, scale A, and shape k.

Applying maximum likelihood estimation to estimate v, 4, k,, that best fit n and the
Vw, Al[)' Kw that best fit l/)

Given a test sample x, we have two independent estimates for P(y|f (x)):

_(—f(x)—vn
BOIfG)=1—e ™M

)T



Py, based on the reverse Weibull CDF derived from the non-match data, which is
equivalent to rejecting the Weibull fitting on the non-match data:

_f(x)_vll) K'L/)
-,
Py(If(x))=1-e v

The W-SVM Algorithm

the probability that the input is from the positive class

P, X P :
netw AND NOT from any of the known negative classes
Py + Py either a positive OR NOT a known negative
y* =argmax P, ,(x) X Py, (x) X1, subjectto Py +(x) X Py 4+ (x) = Op

YEY

1 if Py(y|x) > 6;

indicator variable L, =
Y {O otherwise
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Goal: Multi-class open set recognition Algorithm: W-SVM e AV ”////////j¥
Input:x = 3 @;ﬁ§%
? p / /19‘52 \*
?(0oo) ? ¢ ? . One-class RBF SVYM CAP Model NS
2 Qo ?
- 5 : Po(O]x) < 87; Po(1|x) < d¢;
. Po(2]X) > 87 ; Po(3]X) > 8¢
? 2. Calibrated Binary RBF SVM
' ? ? | ' .
<
A N\ Po(21f(x)) 33 Pu(2lf(x)) 33
unknown unknown Positive set of g3 a3
class finite measure Pr,-(3|f()()) °8 Pw(?)lf()()) ag
3. Probability Fusion
Model: C t Abating Probabilit
odel: Compac ating Probability Pn,2(X) o Pw,Z(X) = 0.001
Monotonically Prob._from k_ernel
decreasing prob. :‘i:‘:‘hé?:t::::::t:oca"y Pr,',S(X) X P(}U,S(X) =0.877

bound - A
training points

Threshold on prob.

—E— e W=SVM thresholded region
Class ‘3’ _ «—— CAP thresholded region

Fig. 1. Open set recognition must address both the known and unknown classes



Nearest neighbors distance ratio open set classifier

Machine Learning 2017




open space : all the region of the feature space outside the support of the training
samples

positively labeled open space (PLOS): the region of the feature space in which a sample
would be classified as positive

KLOS : all the region of the feature space, outside the support of the training samples, in
which a sample would be classified as belonging to one of the known classes.

open space risk: the ratio of the volume of the PLOS to the volume of a sphere containing both
the PLOS and the training samples

arg min{Ro (f) + 4R (f)}
fEH

Two inherently multiclass open-set extensions for the NN classifier

Class Verification (CV) Nearest Neighbor Distance Ratio



Class Verification

Based on the agreement of the labels of the two nearest neighbors with respect to a test sample. The
training phase is the same of the NN, i.e., it only requires the storage of the training samples.

Nearest Neighbor Distance Ratio

The nearest neighbor t of the test sample s and then obtains the nearest neighbor u of s
O(u) + 6(t) O(x) € L.={f,%,,....¢,}

R =d(s,t)/d(s,u)
d(x,x") is the Euclidean distance between samples x and x’ in the feature space

0(t) if R<T

0(s) = {fo if R>T £, is the unknown label



Parameter optimization

fitting set F contains half for the instances of the “known” classes

validation set V contains the other half of the instances of the “known” classes, and all instances of
the “unknown” classes

normalized accuracy (NA) accuracy on known samples (AKS) accuracy on unknown samples (AUS)

NA = 1,AKS + (1 — 1,)AUS
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Dataset (a) SVMMCBIN (b) SVMMEBIN (c) SVMMEoC
o
d) DBCMCBIN WSVM (g) NN
8

A .

(h) TNN (i) TNN oxe (j) OSNNEV (k) OSNN
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Isolation Forest

Classification Under Streaming Emerging New Classes: A Solution
Using Completely-Random Trees

ICDM 2017

TKDE 2017




SENC problem

« L, : ® Knownclasses
1 detecting emerging new classes, Outlying” anomaly subregion *Emerging new class
3 updating models to enable classifice |5 * * 7 [eAnomaly of known class| e
emerging new classes. *: . | Anomaly region
A
]

L -
SENC D={(e,y)} ey L e e 0% 0.0 e b Normal region
i ®9i g® @ o © o°
It L d : : °e e : -
S={(xy)}li=1 % E€ERT ¥y : ‘\ :

Anomaly subregion

Anomalies of Known Classes
0 = {x4, ..., X, }: training instances in an anomaly region A

— 1 .
centerof 0 ¢ = ;erox farthest instance fromc e € O

Ball B centered at c with radius r = dist(c, e) is an anomaly subregion

<¥>

s
A "y,

952 N




SENCForest: An Overview

1. Train a Detector for Emerging New Classes

1) Build an iForest

2) Determine the path length threshold 7, and achieve
anomaly region (A) in each tree.

3) Within each region A, construct ball B which covers
all training instances which fall into this region.

“Outlying” anomaly subregion

/

® Known classes
Emerging new class
e Anomaly of known clasg

D--T\nomaly subregion (B)

Anomaly subregion (B)

2. Using the Known Class Information to Build a Classifier from a Detector

Normal region (K)

class distributions based on known class labels are recorded in each K or B region. Each region
with class distribution acts as a classifier that outputs the majority class as the classification result

for a test instance



3. Deployment in a Data Stream

An instance in the data stream is given a class prediction by SENCForest if it falls into K or B
region; otherwise, it is identified as an instance from an emerging new class and placed in a

buffer of size s.

4. Model Update.

SENCForest: Training Process

o

Algorithm 2. SENCTree

A\ 4

Input: X - input data, MinSize-minimum internal node size

Output: SENCTree
1: if | X| < MinSize then

2: return LeafNode{| X|, F[-], ¢, r}, as defined in Section 5.2,

3: else

4:  let Q be a list of attributes in X
5: randomly select an attribute g € @)
6: randomly select a split point p from max and min values

of attribute g in X
7. Xp < filter(X,q < p)

8: Xp < filter(X,q > p)
9: return inNodel{Left <— SENCTree(X}),
Right < SENCTree(Xpg),

10:
11:
12:
13: end if

SplittAtt — ¢,

SplittValue <« p |,

X A
Wy, e
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Algorithm 1. Build SENCForest

Input: D -input data, z - number of trees, 1/ - subsample size.
Output: SENCForest

1
2
3:
4:
5
6

. initialize: SENCForest < {}
s fori=1,...,zdo
X; «— sample(D, )
SENCForest + SENCForest U SENCTree(X;)
: end for

: return SENCForest
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(a) Isolating x;

(b) Isolating x,,



Determine the Path Length Threshold

SD
Sdrff' T T T T T T T 40
N Cumulative frequency ’
A . l \ _..-" i 30
T =argmin|o(L") — a(L")| 28\ SDy \ B
T ‘\' | ‘i-" il
\'\/ : Il/ 120
— l 1t o e
SDgifr = lo(L") — a(L)] Lo e |
- 0 110
ol e
1 : | | | ] O
(11 = L1 - 4 : 8 12 16
Construct “Outlying” Anomaly Subregions Ordered path length

Ball B is constructed using all training instances in every region A of a tree

Produce a Classifier from a Detector

record class distribution F[j] in each K or B region using the training subsample

F[j] the number of class j instances in a region.
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Deployment in Data Stream

Algorithm 3. Deploying SENCForest in Data Stream

Input: SENCForest, B - buffer of size s

Output: y - class label for each  in a data stream
1: while not end of data stream do
2:  foreachx do

3 y «— SENCForest(x)

4: if y = NewClass then

5: B— BU{z}
6
7
8

y € {by, ..., b, NewClass}

arg max FJ[j] if |B| > s then

JED1, b} Update (SENCForest, B)
: B — NULL
9: m— m+ 1
10: end if
11: end if
12: Output y € {by, ..., b, NewClass}.
13:  end for

14: end while




Model Update i

Prediction Using Multiple SENCForests

Number of SENC'Trees predicting y;
Total number of SENC'Trees

Pi =

Algorithm 5. Final Prediction from E SENCForests

Input: z-an instance in the data stream
Output y, - class label for x
: fori=1,...,Fdo
(Yiy pi) — SENCF. orest;(x)
end for
if V; y; = NewClass then
y, = NewClass
else
L—{ie{l,....E} |y # NewClass}
1 — arg max;.; pi
end if
Output y,

@O RN

—
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Semi-Supervised Learning with Graphs PhD thesis 2005
Active learning via transductive experimental design ICML 2006
Manifold Regularized Experimental Design for Active Learning TIP 2017

Beyond the Point Cloud: from Transductive to Semi-supervised Learning  ICML 2005

Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples

JMLR 2006




