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Sparse Representation-Based Classification

Stack the training samples from the 𝑖𝑡ℎ class as columns of a large matrix:  𝑌𝑖 ∈ ℝ𝑀×𝑁𝑖

𝑌 = 𝑌1, 𝑌2, … , 𝑌𝐾 ∈ ℝ𝑀×𝑁 𝑁 = σ𝑖𝑁𝑖

If the 𝑌𝑖 are sufficiently expressive, a new input sample from the 𝑖𝑡ℎ class stacked as a vector

𝑦𝑡 ∈ ℝ𝑀, will have a sparse representation 

𝑦𝑡 = 𝑌𝑥 𝑥 ∈ 𝑅𝑁

ො𝑥 = argmin
𝑥

||𝑥||1 𝑠. 𝑡. ||𝑦𝑡 − 𝑌𝑥|| 2 < 𝜖 ||𝑥||1 = σ𝑖 |𝑥𝑖|

𝑟𝑘 = ||𝑦𝑡 − 𝑌𝑘 ො𝑥𝑘||2, 𝑘 = 1,… , 𝐾

𝑘∗ = class of 𝑦𝑡 = arg min
𝑘

𝑟𝑘



Extreme Value Theory

an unknown distribution 𝐹(𝑧) n i.i.d. samples {𝑍1, 𝑍2, … , 𝑍𝑛}

𝑍𝑚 = max
𝑖

𝑍𝑖 𝑖 ∈ [1, 𝑛]

single class

all class



Fisher-Tippett-Gnedenko theorem

if there exists a pair of parameters   (𝑎𝑛, 𝑏𝑛)
𝑎𝑛 > 0
𝑏𝑛 > 0

lim
𝑛→∞

𝑃
𝑍𝑚 − 𝑏𝑛

𝑎𝑛
= 𝐸(𝑧)

𝐸 𝑧 is a non-degenerate distribution that belongs to either Frechet, Weibull or Gumbel distribution. These 

distributions can be represented as a Generalized Extreme Value distribution (GEV) as follows

𝐸 𝑧; 𝜇, 𝜎, 𝜉 = exp−𝑝(𝑧) 𝑝 𝑧 = 1 + 𝜉
𝑧 − 𝜇

𝜎

−1/𝜉

𝜇, 𝜎 and 𝜉 are the location, scaling and shape parameters, respectively

choose which distribution to use among the three based on prior knowledge

segment the data into several parts and model the maximum in each part as a 

distribution using GEV



Generalized Pareto distribution (GPD), denoted as 𝐺(𝑧) (CDF) was proposed to estimate the tail 

distribution of data samples.

It was shown that given a sufficiently large threshold 𝑢, the probability of an observation exceeding 

𝑢 by 𝑧 conditioned on 𝑢 can be approximated by

lim
𝑛→∞

𝑃 𝑍 > 𝑧 + 𝑢 𝑍 > 𝑢 = 1 − 𝐺(𝑧)

𝜎 > 0, 𝜉 ∈ ℝ 𝑥+ = max(𝑥, 0)

SPARSE REPRESENTATION-BASED OPEN-SET RECOGNITION

Open set Risk was defined as the cost of labeling the open set sample as known sample



arg min
𝑓

𝐶𝑜 𝑓 + 𝜆𝑟𝐶𝜖(𝑓)

𝐶𝜖(𝑓) :   empirical risk for classification𝐶𝑜 𝑓 :   open set risk

Matched reconstruction errors here mean that 

the errors correspond to the sparse coefficients 

of digit 9

Non-matched reconstruction errors mean 

that the errors are generated by the sparse 

coefficients of all other digits

If one can fit a probability model 𝑃(𝑟𝑘) to describe the distribution of the reconstruction errors of 

the matched class, then one can reformulate the open-set recognition problem as a hypothesis 

testing for novelty detection problem as



ℋ0: 𝑃 𝑟𝑘 ≤ 𝛿
ℋ1: 𝑃 𝑟𝑘 > 𝛿

𝛿 ∈ [0,1]

Use the GPD to model the tail of the matched distribution
ℋ0: 𝐺 𝑟𝑘 ≤ 𝛿𝑔
ℋ1: 𝐺 𝑟𝑘 > 𝛿𝑔

𝐺 𝑟𝑘 is the learned GPD distribution for fitting the right tail of 𝑟𝑘 and 𝛿𝑔 is the rejection threshold.

As we are only interested in the right tail of 

the matched distribution and the left tail 

of the sum of non-matched distribution, 

we apply an inverse procedure to the 

random variable 𝑍 as

𝑍𝐼 = −𝑍

So the right tail of 𝑍𝐼 is the left tail of 𝑍



Training



Testing

𝑤 =
1

3
(1 − Openness)

Openness = 1 −
2 × 𝑁𝑇𝐴

𝑁𝑇𝐺 + 𝑁𝑇𝐸

𝑁𝑇𝐴, 𝑁𝑇𝐺 , and 𝑁𝑇𝐸 are the 
number of training classes, the 
number of target classes to be 
identified, and the number of 
testing classes, respectively

As the two raw reconstruction errors are all normalized into probabilities by their
corresponding GPDs, we can add the two probability scores together with 
appropriate weights to obtain the final score.
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𝑂 be the “open space,” and 𝑆𝑜 be a ball of radius 𝑟𝑜 that includes all of the known 

positive training examples 𝑥 ∈ 𝐾 as well as the open space 𝑂. The probabilistic Open 

Space Risk 𝑅𝑜(𝑓) for a class y can be defined as

The definition of open space 𝑂 = 𝑆𝑜 − ራ

𝑖∈𝑁

𝐵𝑟(𝑥𝑖)

𝐵𝑟(𝑥𝑖) is a closed ball of radius 𝑟 centered around training sample 𝑥𝑖

The idea of a CAP model is to ensure that the recognition function is decreasing away from 

the training data



Abating bound 𝐴 𝑟 :ℝ → ℝ is a non-negative finite square integrable continuous decreasing 

function.     

We call kernel 𝐾 abating if there exists an abating bound A such that

𝐾 𝑥, 𝑥𝑖 =< Φ 𝑥 ,Φ 𝑥𝑖 > 𝑥𝑖∈ 𝒦 𝑥 ∈ 𝑋

∀𝑥, 𝑥𝑖: 0 < 𝐾(𝑥, 𝑥𝑖) ≤ 𝐴||𝑥 − 𝑥𝑖|| RBF (Gaussian) kernels

monotonically decreasing probability distribution 𝑝𝑓(𝑠; 𝑦)Abating Probabilistic Point Model

Consider fusing the abating models, for any example 𝑥 ∈ 𝑋 we define the model

𝑀 𝑥 = 𝑝𝑓(𝐹 𝐾 𝑥, 𝑥1 …𝐾 𝑥, 𝑥𝑚 ; 𝑦)

lim𝑟→∞𝐴 𝑟 = 0



𝐹(𝐾 𝑥, 𝑥1 …𝐾(𝑥, 𝑥𝑚)) ≤ 𝐴𝑥′(||𝑥
′ − 𝑥||) lim𝑟→∞𝐴 𝑟 = 0

positive definite kernels are closed under canonical sums or products

The model can have non-zero probability over all of ℝ𝑛

compact abating probability Model 𝑀𝜏 given finite 𝜏 and ∀𝑥 ∈ 𝑋

min
𝑥𝑖∈𝒦

𝑥 − 𝑥𝑖 > 𝜏 ⇒ 𝑀𝜏 𝑥 = 0

𝐹 is the fusion operator canonical sum or canonical product rule

Fused Abating Property





A simple CAP example: Nearest Neighbor + CAP

𝑑𝑥: the distance to the nearest neighbor of 𝑥

𝑑𝑥 > 𝜏 ⇒ 𝑝𝑎 𝑥 = 0 𝑝𝑎 𝑥 =
|𝜏 − 𝑑𝑥|

𝜏

this results in a thresholded nearest neighbor algorithm that can reject an input as unknown



W-SVM

Unfortunately, the decision score of a binary SVM is not a canonical sum, however, still be useful 

as improved probabilities will generally result in tighter bounds around the class of interest.

Working with only the positive or negative data, we can get nicely bounded results from a binary SVM

that can be used in conjunction with the one-class probabilities.

Weibull-calibrated SVM.

View the SVM as applying a decision rule on which is more similar



We use the one-class SVM CAP model as a conditioner: if the one-class SVM predicts 𝑃𝑜 𝑦 𝑥 > 𝛿𝜏, 
even with a very low threshold 𝛿𝜏, that a given input 𝑥 is a member of class 𝑦, then we will consider 

the binary classifier’s estimates of 𝑃(𝑦|𝑥).

Binary RBF SVM Incorporating a CAP Model

We seek to model the positive and negative scores separately.

𝑦 ∈ 𝒴 𝑃+(𝑦|𝑥) 𝑃−(𝒴\y|𝑥) 𝑃+ 𝑦 𝑥 = 1 − 𝑃−(𝒴\y|𝑥)

Thus to minimize our open space risk, we only consider 𝑃+ and 𝑃+ when 𝑃𝑜 𝑦 𝑥 > 𝛿𝜏

Grounded Probability Estimation

The extreme values of a score distribution produced by any recognition algorithm can always be 

modeled by an EVT distribution, which is a reverse Weibull if the data are bounded from above, and 

a Weibull if bounded from below



A reverse Weibull is justified for the largest scores from the negative examples because they 

are bounded from above

A Weibull is the expected distribution for the smallest scores from the positive examples because 

they are bounded from below.

𝒦 = 𝒦+ ∪𝒦− 𝑠𝑖 = 𝑓(𝑥𝑖) : the SVM decision score for 𝑥𝑖
𝑠𝑗 ∈ 𝑆+ 𝑖𝑓 𝑥𝑗 ∈ 𝒦+ 𝜓

𝑠𝑗 ∈ 𝑆− 𝑖𝑓 𝑥𝑗 ∈ 𝒦− 𝜂

location 𝜈, scale 𝜆, and shape 𝜅.

Applying maximum likelihood estimation to estimate 𝜈𝜂, 𝜆𝜂 , 𝜅𝜂 that best fit 𝜂 and the 

𝜈𝜓, 𝜆𝜓, 𝜅𝜓 that best fit 𝜓

Given a test sample x, we have two independent estimates for 𝑃(𝑦|𝑓(𝑥)):

𝑃𝜂 𝑦 𝑓 𝑥 = 1 − 𝑒
−(
−𝑓 𝑥 −𝑣𝜂

𝜆𝜂
)𝜅𝜂



𝑃𝜓 based on the reverse Weibull CDF derived from the non-match data, which is 

equivalent to rejecting the Weibull fitting on the non-match data:

𝑃𝜓 𝑦 𝑓 𝑥 = 1 − 𝑒
−(
−𝑓 𝑥 −𝑣𝜓

𝜆𝜓
)
𝜅𝜓

The W-SVM Algorithm

the probability that the input is from the positive class

AND NOT from any of the known negative classes
𝑃𝜂 × 𝑃𝜓

𝑃𝜂 + 𝑃𝜓 either a positive OR NOT a known negative

𝑦∗ = arg max
𝑦∈𝒴

𝑃𝜂,𝑦(𝑥) × 𝑃𝜓,𝑦(𝑥) × 𝑙𝑦 subject to 𝑃𝜂,𝑦∗(𝑥) × 𝑃𝜓,𝑦∗(𝑥) ≥ 𝛿𝑅

indicator variable 𝑙𝑦 = ቊ
1 if 𝑃𝑂 𝑦 𝑥 > 𝛿𝜏
0 otherwise
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positively labeled open space (PLOS): the region of the feature space in which a sample 
would be classified as positive

open space： all the region of the feature space outside the support of the training 
samples

KLOS：all the region of the feature space, outside the support of the training samples, in 
which a sample would be classified as belonging to one of the known classes.

open space risk: the ratio of the volume of the PLOS to the volume of a sphere containing both 
the PLOS and the training samples

arg min
𝑓∈ℋ

{𝑅𝑂 𝑓 + 𝜆𝑟𝑅𝜀(𝑓)}

Two inherently multiclass open-set extensions for the NN classifier

Class Verification (CV) Nearest Neighbor Distance Ratio



Class Verification

Based on the agreement of the labels of the two nearest neighbors with respect to a test sample. The 

training phase is the same of the NN, i.e., it only requires the storage of the training samples. 

Nearest Neighbor Distance Ratio

The nearest neighbor 𝑡 of the test sample 𝑠 and then obtains the nearest neighbor 𝑢 of 𝑠

𝜃 𝑢 ≠ 𝜃 𝑡 𝜃 𝑥 ∈ ℒ = {ℓ1, ℓ2, … , ℓ𝑛}

𝑅 = 𝑑(𝑠, 𝑡)/𝑑(𝑠, 𝑢)

𝑑 𝑥, 𝑥′ is the Euclidean distance between samples 𝑥 and 𝑥′ in the feature space

𝜃 𝑠 = ቊ
𝜃 𝑡 𝑖𝑓 𝑅 ≤ 𝑇
ℓ0 𝑖𝑓 𝑅 > 𝑇

ℓ0 is the unknown label



Parameter optimization

fitting set F contains half for the instances of the “known” classes

validation set V contains the other half of the instances of the “known” classes, and all instances of 

the “unknown” classes

NA = 𝜆𝑟AKS + 1 − 𝜆𝑟 AUS

normalized accuracy (NA) accuracy on known samples (AKS) accuracy on unknown samples (AUS)
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1  detecting emerging new classes,                      2  classifying known classes

3  updating models to enable classification of instances of the new classes and detection of more 

emerging new classes.

SENC problem 

SENC 𝐷 = {(𝑥𝑖 , 𝑦𝑖)} 𝑖=1
𝐿 𝑥𝑖 ∈ 𝑅𝑑 𝑦𝑖 ∈ 𝑌 = {1,2, . . , 𝐾}

𝑆 = {(𝑥𝑡
′, 𝑦𝑡

′)} 𝑖=1
𝐿 𝑥𝑖 ∈ 𝑅𝑑 𝑦′ ∈ 𝑌′ = 1,2, …𝐾, 𝐾 + 1,… ,𝑀 𝑀 > 𝐾

Anomalies of Known Classes

𝒪 = {𝑥1, … , 𝑥𝑛}: training instances in an anomaly region A

center of 𝒪 c =
1

𝑛
σ𝑥∈𝒪 𝑥 farthest instance from 𝑐 𝑒 ∈ 𝒪

Ball 𝐵 centered at c with radius 𝑟 = 𝑑𝑖𝑠𝑡(𝑐, 𝑒) is an anomaly subregion



SENCForest: An Overview

1. Train a Detector for Emerging New Classes

3) Within each region A, construct ball B which covers

all training instances which fall into this region. 

1)   Build an iForest

2)   Determine the path length threshold Ƹ𝜏, and achieve 

anomaly region (A) in each tree.

2. Using the Known Class Information to Build a Classifier from a Detector

class distributions based on known class labels are recorded in each K or B region. Each region 

with class distribution acts as a classifier that outputs the majority class as the classification result 

for a test instance



3. Deployment in a Data Stream

An instance in the data stream is given a class prediction by SENCForest if it falls into K or B 

region; otherwise, it is identified as an instance from an emerging new class and placed in a 

buffer of size s.

4. Model Update.

SENCForest: Training Process





Determine the Path Length Threshold

Ƹ𝜏 = arg min
𝜏

|𝜎(𝐿𝑟) − 𝜎(𝐿𝑙)|

𝑆𝐷𝑑𝑖𝑓𝑓 = |𝜎(𝐿𝑟) − 𝜎(𝐿𝑙)|

Construct “Outlying” Anomaly Subregions

Ball B is constructed using all training instances in every region A of a tree

Produce a Classifier from a Detector

record class distribution 𝐹[𝑗] in each K or B region using the training subsample

𝐹[𝑗] the number of class 𝑗 instances in a region.



Deployment in Data Stream

𝑦 ∈ {𝑏1, … , 𝑏𝑚, 𝑁𝑒𝑤𝐶𝑙𝑎𝑠𝑠}

arg max
𝑗∈{𝑏1,…,𝑏𝑚}

𝐹[𝑗]



Model Update

Prediction Using Multiple SENCForests

略
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