The Application Of Active PU Learning In Content Based Image Retrieval

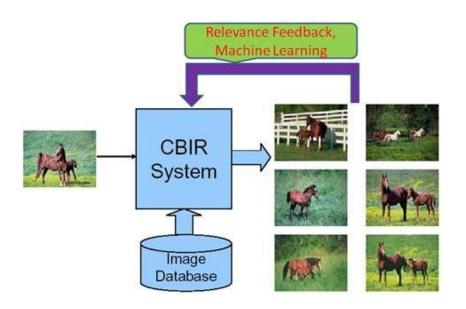
Reported by: Cai Jia-Jia

Outline

- Introduction
 - Relevance Feedback in Content Based Image Retrieval
- The Methods
 - SSAIRA: (Semi-Supervised Active Image Retrieval with Asymmetry)
 - Adaptive threshold
- Try

RF in CBIR

• Relevance Feedback in content based image retrieval



Characteristic:

- Small sample
- Asymmetrical training sample
- Real time requirement

Connection with PU Learning

- Only positive example(s) and unlabeled data
- Imbalance between positive and negative
- RF: active learning

SSAIRA

Base Learner:

$$L_{i}(\boldsymbol{x}, \mathcal{P}_{i}, \mathcal{N}_{i}) = \left(\sum_{\boldsymbol{y} \in \mathcal{P}_{i}} \frac{Sim_{i}(\boldsymbol{x}, \boldsymbol{y})}{|\mathcal{P}_{i}| + \varepsilon} - \sum_{\boldsymbol{z} \in \mathcal{N}_{i}} \frac{Sim_{i}(\boldsymbol{x}, \boldsymbol{z})}{|\mathcal{N}_{i}| + \varepsilon}\right) / \mathcal{Z}_{norm}$$
(1)

Note that similar matrix can be computed offline.

Real time requirement.

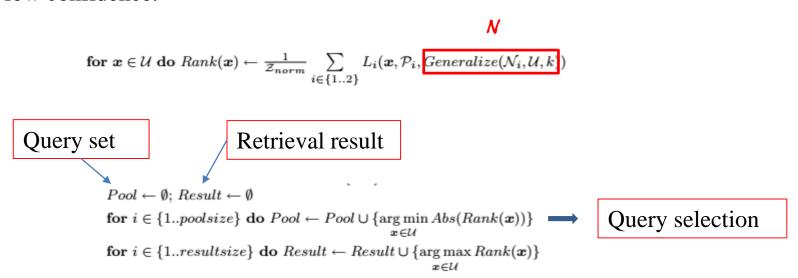
Co-training:

$$\begin{split} &Getfeedback(\mathcal{P}^*,\mathcal{N}^*)\\ &\mathcal{P} \leftarrow \mathcal{P} \cup \mathcal{P}^*;\, \mathcal{N} \leftarrow \mathcal{N} \cup \mathcal{N}^*;\, \mathcal{U} \leftarrow \mathcal{U} - (\mathcal{P}^* \cup \mathcal{N}^*) \end{split}$$
 for $i \in \{1..2\}$ do
$$& \mathcal{N}\\ & \mathcal{P}_i \leftarrow \mathcal{P}\\ & \mathcal{N}_i \leftarrow \mathcal{N} \cup \{\underset{\boldsymbol{x} \in \mathcal{U}}{\arg\min}\, L_{(3-i)}(\boldsymbol{x},\mathcal{P},\underset{\boldsymbol{x} \in \mathcal{U}}{Generalize}(\mathcal{N},\mathcal{U},k))\} \end{split}$$

Negative is too diverse.

Active Learning

Label images on which the learners disagree the most, or both learners are with low confidence.



Asymmetrical training sample

- Positive examples can be regarded as belonging to the same relevant class, but the negative examples may belong to different irrelevant classes.
- Assume each negative example is a representative of a potential semantic class.
- The k-nearest neighboring unlabeled examples are identified for each negative example and then the feature vectors of these k+1 examples are averaged to derive a virtual example, which is used by the learners instead of the original negative example.

Generate **representative** negative example

Table II. Pseudo-code describing the Generalize function

```
GENERALIZE(\mathcal{D}_n, \mathcal{D}_u, k)

Input: \mathcal{D}_n: A data set whose elements are to be generalized \mathcal{D}_u: A data set in which neighbors are to be identified k: Number of neighbors used in generalizing

\mathcal{D}^* \leftarrow \emptyset

for \mathbf{x} \in \mathcal{D}_n do

\mathcal{D}' \leftarrow Neighbors(\mathbf{x}, \mathcal{D}_u, k) %% \mathcal{D}' stores the k-nearest neighbors of \mathbf{x} in \mathcal{D}_u

\mathcal{D}' \leftarrow \mathcal{D}' \cup \{\mathbf{x}\}

\mathbf{x}' \leftarrow Ave(\mathcal{D}') %% \mathbf{x}' is the average feature vector of the feature vectors in \mathcal{D}'

\mathcal{D}^* \leftarrow \mathcal{D}^* \cup \{\mathbf{x}'\}

Output: \mathcal{D}^*
```

Pseudo-code

Table I. Pseudo-code describing the Ssaira method

```
SSAIRA(query, DB, L<sub>1</sub>, L<sub>2</sub>, k, poolsize, resultsize)
       Input: query: User query
                    DB: Image database
                    L_i (i \in \{1...2\}): Learners
                     k: Number of neighbors used in generalizing negative examples
                     poolsize: Number of images in the pool
                     resultsize: Number of images to be returned
       \mathcal{P} \leftarrow \{query\}; \mathcal{N} \leftarrow \emptyset; \mathcal{U} \leftarrow DB
       In each round of relevance feedback:
      Getfeedback(P^*, N^*)
2 \mathcal{P} \leftarrow \mathcal{P} \cup \mathcal{P}^*; \mathcal{N} \leftarrow \mathcal{N} \cup \mathcal{N}^*; \mathcal{U} \leftarrow \mathcal{U} - (\mathcal{P}^* \cup \mathcal{N}^*)
       for i \in \{1..2\} do
                  P_i \leftarrow P
                  \mathcal{N}_i \leftarrow \mathcal{N} \cup \{ \operatorname*{arg\,min}_{\boldsymbol{x} \in \mathcal{U}} L_{(3-i)}(\boldsymbol{x}, \mathcal{P}, Generalize(\mathcal{N}, \mathcal{U}, k)) \}
5
      for x \in \mathcal{U} do Rank(x) \leftarrow \frac{1}{\mathbb{Z}_{norm}} \sum_{i \in \{1...2\}} L_i(x, \mathcal{P}_i, Generalize(\mathcal{N}_i, \mathcal{U}, k))
       Pool \leftarrow \emptyset; Result \leftarrow \emptyset
      for i \in \{1..poolsize\} do Pool \leftarrow Pool \cup \{arg min Abs(Rank(x))\}
       for i \in \{1..resultsize\} do Result \leftarrow Result \cup \{\arg \max Rank(x)\}
       Output: Result; Pool
```

Experiment

Dataset: Corel Image Features Data Set

> Contain 100 classes, each class has 100 images

• First dataset: 20 classes

Second dataset: 100 classes

Table III. Geometrical effectivenesses of SSAIRA (SA), BALAS (B), SVM_{Active} (V), and NAIVE (N) when C=20

	F = 5					F =	= 7			F = 9				
	SA	В	V	N	SA	В	V	N	SA	В	V	N		
$\bar{\eta}_{200}^{0}(\%)$	43.8	28.5	38.7	40.2	45.8	25.4	40.8	42.7	47.7	24.4	42.5	44.4		
$\bar{\eta}_{200}^{\bar{1}00}(\%)$	45.0	28.5	39.6	41.6	49.6	28.0	41.8	44.0	50.3	25.6	43.1	44.5		
$\bar{\eta}_{200}^{2}(\%)$	46.8	29.9	40.3	43.1	51.1	26.9	42.9	46.4	53.0	26.6	44.6	46.7		
$\bar{\eta}_{200}^{3}(\%)$	49.7	29.1	40.9	44.2	52.9	26.6	45.4	47.3	54.6	27.8	46.7	47.7		
$\bar{\eta}_{200}^4(\%)$	52.0	28.8	43.9	45.1	54.6	26.0	46.8	47.6	55.9	27.8	48.5	49.2		
$\bar{\eta}_{200}^{\bar{5}}(\%)$	53.2	29.7	46.7	45.7	56.1	28.4	47.5	49.3	57.6	29.5	50.5	49.9		

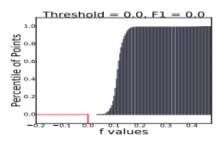
Table IV. Geometrical effectivenesses of SSAIRA (SA), BALAS (B), SVM_{Active} (V), and NAIVE (N) when C = 100

	F = 5					F =	= 7		F = 9				
	SA	В	V	N	$_{\mathrm{SA}}$	В	V	N	SA	В	V	N	
$\bar{\eta}_{200}^{0}(\%)$	19.0	8.6	13.9	15.7	22.1	9.9	16.7	18.6	23.2	10.9	17.6	19.5	
$\bar{\eta}_{200}^{\bar{1}}(\%)$	20.0	12.3	14.7	15.3	22.7	13.4	17.3	16.8	23.5	14.6	17.6	17.8	
$\bar{\eta}_{200}^{\bar{2}}(\%)$	20.9	14.2	14.0	17.7	24.4	15.1	16.5	20.3	25.2	16.4	17.7	20.9	
$\bar{\eta}_{200}^{\bar{3}}(\%)$	22.7	15.2	14.9	19.7	26.0	16.4	17.1	22.3	26.7	18.0	18.2	23.3	
$\bar{\eta}_{200}^{4}(\%)$	23.5	16.2	16.8	21.2	27.0	17.8	18.0	23.6	27.3	19.2	20.6	24.8	
$\bar{\eta}_{200}^{\bar{5}}(\%)$	24.6	17.3	18.1	21.4	27.7	18.5	20.7	24.5	28.6	19.9	23.1	26.3	

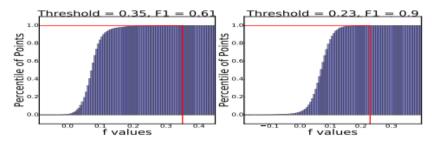
Adaptive threshold

Algorithm 3 Algorithm for adaptive threshold

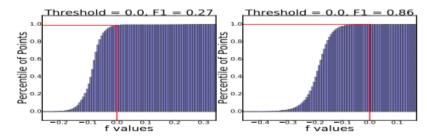
```
(Online steps)
   i \leftarrow 1
   f^* \Leftarrow \text{final } f^* \text{ for all features}
   \Theta \leftarrow 0
   while i \neq Maximum number of active learning rounds do
        x \leftarrow \text{Point whose } f^* \text{ value is closest to } \Theta
        Query the label for x
        if Predicted label of x \neq actual label of x then
             if Predicted label of x = -1 then
                  \Theta \leftarrow \Theta - \frac{1}{\alpha i}.
             else
                  \Theta \leftarrow \Theta + \frac{1}{\alpha i}
             end if
        end if
        Add queried point to the set of labeled points
        Obtain f^* using the new set of labeled points
        i \leftarrow i + 1
   end while
```



(d) Zeroth iteration



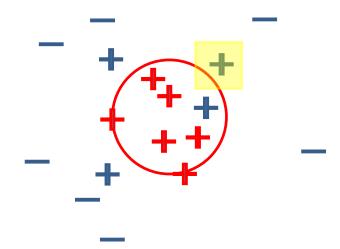
(e) With adaptive threshold after 20 and 200 labeling rounds



(f) With constant threshold after 20 and 200 labeling rounds

Some Trying

- ➤ One-class active learning:
 - At first, the handful positive examples contain little distribution information about target class.
 - How to enlarge the positive set?



Base learner: one-class SVM Query selection:

- Combine two similarity metric methods to evaluate similarity between an instance and the target class
- Adaptive threshold:
 - If positive, threshold += step_size
 - If negative, threshold -= step_size

USPS

